980 lines
		
	
	
	
		
			31 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			980 lines
		
	
	
	
		
			31 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
| ** $Id: ltable.c $
 | |
| ** Lua tables (hash)
 | |
| ** See Copyright Notice in lua.h
 | |
| */
 | |
| 
 | |
| #define ltable_c
 | |
| #define LUA_CORE
 | |
| 
 | |
| #include "lprefix.h"
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Implementation of tables (aka arrays, objects, or hash tables).
 | |
| ** Tables keep its elements in two parts: an array part and a hash part.
 | |
| ** Non-negative integer keys are all candidates to be kept in the array
 | |
| ** part. The actual size of the array is the largest 'n' such that
 | |
| ** more than half the slots between 1 and n are in use.
 | |
| ** Hash uses a mix of chained scatter table with Brent's variation.
 | |
| ** A main invariant of these tables is that, if an element is not
 | |
| ** in its main position (i.e. the 'original' position that its hash gives
 | |
| ** to it), then the colliding element is in its own main position.
 | |
| ** Hence even when the load factor reaches 100%, performance remains good.
 | |
| */
 | |
| 
 | |
| #include <math.h>
 | |
| #include <limits.h>
 | |
| 
 | |
| #include "lua.h"
 | |
| 
 | |
| #include "ldebug.h"
 | |
| #include "ldo.h"
 | |
| #include "lgc.h"
 | |
| #include "lmem.h"
 | |
| #include "lobject.h"
 | |
| #include "lstate.h"
 | |
| #include "lstring.h"
 | |
| #include "ltable.h"
 | |
| #include "lvm.h"
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** MAXABITS is the largest integer such that MAXASIZE fits in an
 | |
| ** unsigned int.
 | |
| */
 | |
| #define MAXABITS	cast_int(sizeof(int) * CHAR_BIT - 1)
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** MAXASIZE is the maximum size of the array part. It is the minimum
 | |
| ** between 2^MAXABITS and the maximum size that, measured in bytes,
 | |
| ** fits in a 'size_t'.
 | |
| */
 | |
| #define MAXASIZE	luaM_limitN(1u << MAXABITS, TValue)
 | |
| 
 | |
| /*
 | |
| ** MAXHBITS is the largest integer such that 2^MAXHBITS fits in a
 | |
| ** signed int.
 | |
| */
 | |
| #define MAXHBITS	(MAXABITS - 1)
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** MAXHSIZE is the maximum size of the hash part. It is the minimum
 | |
| ** between 2^MAXHBITS and the maximum size such that, measured in bytes,
 | |
| ** it fits in a 'size_t'.
 | |
| */
 | |
| #define MAXHSIZE	luaM_limitN(1u << MAXHBITS, Node)
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** When the original hash value is good, hashing by a power of 2
 | |
| ** avoids the cost of '%'.
 | |
| */
 | |
| #define hashpow2(t,n)		(gnode(t, lmod((n), sizenode(t))))
 | |
| 
 | |
| /*
 | |
| ** for other types, it is better to avoid modulo by power of 2, as
 | |
| ** they can have many 2 factors.
 | |
| */
 | |
| #define hashmod(t,n)	(gnode(t, ((n) % ((sizenode(t)-1)|1))))
 | |
| 
 | |
| 
 | |
| #define hashstr(t,str)		hashpow2(t, (str)->hash)
 | |
| #define hashboolean(t,p)	hashpow2(t, p)
 | |
| 
 | |
| 
 | |
| #define hashpointer(t,p)	hashmod(t, point2uint(p))
 | |
| 
 | |
| 
 | |
| #define dummynode		(&dummynode_)
 | |
| 
 | |
| static const Node dummynode_ = {
 | |
|   {{NULL}, LUA_VEMPTY,  /* value's value and type */
 | |
|    LUA_VNIL, 0, {NULL}}  /* key type, next, and key value */
 | |
| };
 | |
| 
 | |
| 
 | |
| static const TValue absentkey = {ABSTKEYCONSTANT};
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Hash for integers. To allow a good hash, use the remainder operator
 | |
| ** ('%'). If integer fits as a non-negative int, compute an int
 | |
| ** remainder, which is faster. Otherwise, use an unsigned-integer
 | |
| ** remainder, which uses all bits and ensures a non-negative result.
 | |
| */
 | |
| static Node *hashint (const Table *t, lua_Integer i) {
 | |
|   lua_Unsigned ui = l_castS2U(i);
 | |
|   if (ui <= cast_uint(INT_MAX))
 | |
|     return hashmod(t, cast_int(ui));
 | |
|   else
 | |
|     return hashmod(t, ui);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Hash for floating-point numbers.
 | |
| ** The main computation should be just
 | |
| **     n = frexp(n, &i); return (n * INT_MAX) + i
 | |
| ** but there are some numerical subtleties.
 | |
| ** In a two-complement representation, INT_MAX does not has an exact
 | |
| ** representation as a float, but INT_MIN does; because the absolute
 | |
| ** value of 'frexp' is smaller than 1 (unless 'n' is inf/NaN), the
 | |
| ** absolute value of the product 'frexp * -INT_MIN' is smaller or equal
 | |
| ** to INT_MAX. Next, the use of 'unsigned int' avoids overflows when
 | |
| ** adding 'i'; the use of '~u' (instead of '-u') avoids problems with
 | |
| ** INT_MIN.
 | |
| */
 | |
| #if !defined(l_hashfloat)
 | |
| static int l_hashfloat (lua_Number n) {
 | |
|   int i;
 | |
|   lua_Integer ni;
 | |
|   n = l_mathop(frexp)(n, &i) * -cast_num(INT_MIN);
 | |
|   if (!lua_numbertointeger(n, &ni)) {  /* is 'n' inf/-inf/NaN? */
 | |
|     lua_assert(luai_numisnan(n) || l_mathop(fabs)(n) == cast_num(HUGE_VAL));
 | |
|     return 0;
 | |
|   }
 | |
|   else {  /* normal case */
 | |
|     unsigned int u = cast_uint(i) + cast_uint(ni);
 | |
|     return cast_int(u <= cast_uint(INT_MAX) ? u : ~u);
 | |
|   }
 | |
| }
 | |
| #endif
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** returns the 'main' position of an element in a table (that is,
 | |
| ** the index of its hash value).
 | |
| */
 | |
| static Node *mainpositionTV (const Table *t, const TValue *key) {
 | |
|   switch (ttypetag(key)) {
 | |
|     case LUA_VNUMINT: {
 | |
|       lua_Integer i = ivalue(key);
 | |
|       return hashint(t, i);
 | |
|     }
 | |
|     case LUA_VNUMFLT: {
 | |
|       lua_Number n = fltvalue(key);
 | |
|       return hashmod(t, l_hashfloat(n));
 | |
|     }
 | |
|     case LUA_VSHRSTR: {
 | |
|       TString *ts = tsvalue(key);
 | |
|       return hashstr(t, ts);
 | |
|     }
 | |
|     case LUA_VLNGSTR: {
 | |
|       TString *ts = tsvalue(key);
 | |
|       return hashpow2(t, luaS_hashlongstr(ts));
 | |
|     }
 | |
|     case LUA_VFALSE:
 | |
|       return hashboolean(t, 0);
 | |
|     case LUA_VTRUE:
 | |
|       return hashboolean(t, 1);
 | |
|     case LUA_VLIGHTUSERDATA: {
 | |
|       void *p = pvalue(key);
 | |
|       return hashpointer(t, p);
 | |
|     }
 | |
|     case LUA_VLCF: {
 | |
|       lua_CFunction f = fvalue(key);
 | |
|       return hashpointer(t, f);
 | |
|     }
 | |
|     default: {
 | |
|       GCObject *o = gcvalue(key);
 | |
|       return hashpointer(t, o);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| l_sinline Node *mainpositionfromnode (const Table *t, Node *nd) {
 | |
|   TValue key;
 | |
|   getnodekey(cast(lua_State *, NULL), &key, nd);
 | |
|   return mainpositionTV(t, &key);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Check whether key 'k1' is equal to the key in node 'n2'. This
 | |
| ** equality is raw, so there are no metamethods. Floats with integer
 | |
| ** values have been normalized, so integers cannot be equal to
 | |
| ** floats. It is assumed that 'eqshrstr' is simply pointer equality, so
 | |
| ** that short strings are handled in the default case.
 | |
| ** A true 'deadok' means to accept dead keys as equal to their original
 | |
| ** values. All dead keys are compared in the default case, by pointer
 | |
| ** identity. (Only collectable objects can produce dead keys.) Note that
 | |
| ** dead long strings are also compared by identity.
 | |
| ** Once a key is dead, its corresponding value may be collected, and
 | |
| ** then another value can be created with the same address. If this
 | |
| ** other value is given to 'next', 'equalkey' will signal a false
 | |
| ** positive. In a regular traversal, this situation should never happen,
 | |
| ** as all keys given to 'next' came from the table itself, and therefore
 | |
| ** could not have been collected. Outside a regular traversal, we
 | |
| ** have garbage in, garbage out. What is relevant is that this false
 | |
| ** positive does not break anything.  (In particular, 'next' will return
 | |
| ** some other valid item on the table or nil.)
 | |
| */
 | |
| static int equalkey (const TValue *k1, const Node *n2, int deadok) {
 | |
|   if ((rawtt(k1) != keytt(n2)) &&  /* not the same variants? */
 | |
|        !(deadok && keyisdead(n2) && iscollectable(k1)))
 | |
|    return 0;  /* cannot be same key */
 | |
|   switch (keytt(n2)) {
 | |
|     case LUA_VNIL: case LUA_VFALSE: case LUA_VTRUE:
 | |
|       return 1;
 | |
|     case LUA_VNUMINT:
 | |
|       return (ivalue(k1) == keyival(n2));
 | |
|     case LUA_VNUMFLT:
 | |
|       return luai_numeq(fltvalue(k1), fltvalueraw(keyval(n2)));
 | |
|     case LUA_VLIGHTUSERDATA:
 | |
|       return pvalue(k1) == pvalueraw(keyval(n2));
 | |
|     case LUA_VLCF:
 | |
|       return fvalue(k1) == fvalueraw(keyval(n2));
 | |
|     case ctb(LUA_VLNGSTR):
 | |
|       return luaS_eqlngstr(tsvalue(k1), keystrval(n2));
 | |
|     default:
 | |
|       return gcvalue(k1) == gcvalueraw(keyval(n2));
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** True if value of 'alimit' is equal to the real size of the array
 | |
| ** part of table 't'. (Otherwise, the array part must be larger than
 | |
| ** 'alimit'.)
 | |
| */
 | |
| #define limitequalsasize(t)	(isrealasize(t) || ispow2((t)->alimit))
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Returns the real size of the 'array' array
 | |
| */
 | |
| LUAI_FUNC unsigned int luaH_realasize (const Table *t) {
 | |
|   if (limitequalsasize(t))
 | |
|     return t->alimit;  /* this is the size */
 | |
|   else {
 | |
|     unsigned int size = t->alimit;
 | |
|     /* compute the smallest power of 2 not smaller than 'n' */
 | |
|     size |= (size >> 1);
 | |
|     size |= (size >> 2);
 | |
|     size |= (size >> 4);
 | |
|     size |= (size >> 8);
 | |
| #if (UINT_MAX >> 14) > 3  /* unsigned int has more than 16 bits */
 | |
|     size |= (size >> 16);
 | |
| #if (UINT_MAX >> 30) > 3
 | |
|     size |= (size >> 32);  /* unsigned int has more than 32 bits */
 | |
| #endif
 | |
| #endif
 | |
|     size++;
 | |
|     lua_assert(ispow2(size) && size/2 < t->alimit && t->alimit < size);
 | |
|     return size;
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Check whether real size of the array is a power of 2.
 | |
| ** (If it is not, 'alimit' cannot be changed to any other value
 | |
| ** without changing the real size.)
 | |
| */
 | |
| static int ispow2realasize (const Table *t) {
 | |
|   return (!isrealasize(t) || ispow2(t->alimit));
 | |
| }
 | |
| 
 | |
| 
 | |
| static unsigned int setlimittosize (Table *t) {
 | |
|   t->alimit = luaH_realasize(t);
 | |
|   setrealasize(t);
 | |
|   return t->alimit;
 | |
| }
 | |
| 
 | |
| 
 | |
| #define limitasasize(t)	check_exp(isrealasize(t), t->alimit)
 | |
| 
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** "Generic" get version. (Not that generic: not valid for integers,
 | |
| ** which may be in array part, nor for floats with integral values.)
 | |
| ** See explanation about 'deadok' in function 'equalkey'.
 | |
| */
 | |
| static const TValue *getgeneric (Table *t, const TValue *key, int deadok) {
 | |
|   Node *n = mainpositionTV(t, key);
 | |
|   for (;;) {  /* check whether 'key' is somewhere in the chain */
 | |
|     if (equalkey(key, n, deadok))
 | |
|       return gval(n);  /* that's it */
 | |
|     else {
 | |
|       int nx = gnext(n);
 | |
|       if (nx == 0)
 | |
|         return &absentkey;  /* not found */
 | |
|       n += nx;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** returns the index for 'k' if 'k' is an appropriate key to live in
 | |
| ** the array part of a table, 0 otherwise.
 | |
| */
 | |
| static unsigned int arrayindex (lua_Integer k) {
 | |
|   if (l_castS2U(k) - 1u < MAXASIZE)  /* 'k' in [1, MAXASIZE]? */
 | |
|     return cast_uint(k);  /* 'key' is an appropriate array index */
 | |
|   else
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** returns the index of a 'key' for table traversals. First goes all
 | |
| ** elements in the array part, then elements in the hash part. The
 | |
| ** beginning of a traversal is signaled by 0.
 | |
| */
 | |
| static unsigned int findindex (lua_State *L, Table *t, TValue *key,
 | |
|                                unsigned int asize) {
 | |
|   unsigned int i;
 | |
|   if (ttisnil(key)) return 0;  /* first iteration */
 | |
|   i = ttisinteger(key) ? arrayindex(ivalue(key)) : 0;
 | |
|   if (i - 1u < asize)  /* is 'key' inside array part? */
 | |
|     return i;  /* yes; that's the index */
 | |
|   else {
 | |
|     const TValue *n = getgeneric(t, key, 1);
 | |
|     if (l_unlikely(isabstkey(n)))
 | |
|       luaG_runerror(L, "invalid key to 'next'");  /* key not found */
 | |
|     i = cast_int(nodefromval(n) - gnode(t, 0));  /* key index in hash table */
 | |
|     /* hash elements are numbered after array ones */
 | |
|     return (i + 1) + asize;
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| int luaH_next (lua_State *L, Table *t, StkId key) {
 | |
|   unsigned int asize = luaH_realasize(t);
 | |
|   unsigned int i = findindex(L, t, s2v(key), asize);  /* find original key */
 | |
|   for (; i < asize; i++) {  /* try first array part */
 | |
|     if (!isempty(&t->array[i])) {  /* a non-empty entry? */
 | |
|       setivalue(s2v(key), i + 1);
 | |
|       setobj2s(L, key + 1, &t->array[i]);
 | |
|       return 1;
 | |
|     }
 | |
|   }
 | |
|   for (i -= asize; cast_int(i) < sizenode(t); i++) {  /* hash part */
 | |
|     if (!isempty(gval(gnode(t, i)))) {  /* a non-empty entry? */
 | |
|       Node *n = gnode(t, i);
 | |
|       getnodekey(L, s2v(key), n);
 | |
|       setobj2s(L, key + 1, gval(n));
 | |
|       return 1;
 | |
|     }
 | |
|   }
 | |
|   return 0;  /* no more elements */
 | |
| }
 | |
| 
 | |
| 
 | |
| static void freehash (lua_State *L, Table *t) {
 | |
|   if (!isdummy(t))
 | |
|     luaM_freearray(L, t->node, cast_sizet(sizenode(t)));
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** {=============================================================
 | |
| ** Rehash
 | |
| ** ==============================================================
 | |
| */
 | |
| 
 | |
| /*
 | |
| ** Compute the optimal size for the array part of table 't'. 'nums' is a
 | |
| ** "count array" where 'nums[i]' is the number of integers in the table
 | |
| ** between 2^(i - 1) + 1 and 2^i. 'pna' enters with the total number of
 | |
| ** integer keys in the table and leaves with the number of keys that
 | |
| ** will go to the array part; return the optimal size.  (The condition
 | |
| ** 'twotoi > 0' in the for loop stops the loop if 'twotoi' overflows.)
 | |
| */
 | |
| static unsigned int computesizes (unsigned int nums[], unsigned int *pna) {
 | |
|   int i;
 | |
|   unsigned int twotoi;  /* 2^i (candidate for optimal size) */
 | |
|   unsigned int a = 0;  /* number of elements smaller than 2^i */
 | |
|   unsigned int na = 0;  /* number of elements to go to array part */
 | |
|   unsigned int optimal = 0;  /* optimal size for array part */
 | |
|   /* loop while keys can fill more than half of total size */
 | |
|   for (i = 0, twotoi = 1;
 | |
|        twotoi > 0 && *pna > twotoi / 2;
 | |
|        i++, twotoi *= 2) {
 | |
|     a += nums[i];
 | |
|     if (a > twotoi/2) {  /* more than half elements present? */
 | |
|       optimal = twotoi;  /* optimal size (till now) */
 | |
|       na = a;  /* all elements up to 'optimal' will go to array part */
 | |
|     }
 | |
|   }
 | |
|   lua_assert((optimal == 0 || optimal / 2 < na) && na <= optimal);
 | |
|   *pna = na;
 | |
|   return optimal;
 | |
| }
 | |
| 
 | |
| 
 | |
| static int countint (lua_Integer key, unsigned int *nums) {
 | |
|   unsigned int k = arrayindex(key);
 | |
|   if (k != 0) {  /* is 'key' an appropriate array index? */
 | |
|     nums[luaO_ceillog2(k)]++;  /* count as such */
 | |
|     return 1;
 | |
|   }
 | |
|   else
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Count keys in array part of table 't': Fill 'nums[i]' with
 | |
| ** number of keys that will go into corresponding slice and return
 | |
| ** total number of non-nil keys.
 | |
| */
 | |
| static unsigned int numusearray (const Table *t, unsigned int *nums) {
 | |
|   int lg;
 | |
|   unsigned int ttlg;  /* 2^lg */
 | |
|   unsigned int ause = 0;  /* summation of 'nums' */
 | |
|   unsigned int i = 1;  /* count to traverse all array keys */
 | |
|   unsigned int asize = limitasasize(t);  /* real array size */
 | |
|   /* traverse each slice */
 | |
|   for (lg = 0, ttlg = 1; lg <= MAXABITS; lg++, ttlg *= 2) {
 | |
|     unsigned int lc = 0;  /* counter */
 | |
|     unsigned int lim = ttlg;
 | |
|     if (lim > asize) {
 | |
|       lim = asize;  /* adjust upper limit */
 | |
|       if (i > lim)
 | |
|         break;  /* no more elements to count */
 | |
|     }
 | |
|     /* count elements in range (2^(lg - 1), 2^lg] */
 | |
|     for (; i <= lim; i++) {
 | |
|       if (!isempty(&t->array[i-1]))
 | |
|         lc++;
 | |
|     }
 | |
|     nums[lg] += lc;
 | |
|     ause += lc;
 | |
|   }
 | |
|   return ause;
 | |
| }
 | |
| 
 | |
| 
 | |
| static int numusehash (const Table *t, unsigned int *nums, unsigned int *pna) {
 | |
|   int totaluse = 0;  /* total number of elements */
 | |
|   int ause = 0;  /* elements added to 'nums' (can go to array part) */
 | |
|   int i = sizenode(t);
 | |
|   while (i--) {
 | |
|     Node *n = &t->node[i];
 | |
|     if (!isempty(gval(n))) {
 | |
|       if (keyisinteger(n))
 | |
|         ause += countint(keyival(n), nums);
 | |
|       totaluse++;
 | |
|     }
 | |
|   }
 | |
|   *pna += ause;
 | |
|   return totaluse;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Creates an array for the hash part of a table with the given
 | |
| ** size, or reuses the dummy node if size is zero.
 | |
| ** The computation for size overflow is in two steps: the first
 | |
| ** comparison ensures that the shift in the second one does not
 | |
| ** overflow.
 | |
| */
 | |
| static void setnodevector (lua_State *L, Table *t, unsigned int size) {
 | |
|   if (size == 0) {  /* no elements to hash part? */
 | |
|     t->node = cast(Node *, dummynode);  /* use common 'dummynode' */
 | |
|     t->lsizenode = 0;
 | |
|     t->lastfree = NULL;  /* signal that it is using dummy node */
 | |
|   }
 | |
|   else {
 | |
|     int i;
 | |
|     int lsize = luaO_ceillog2(size);
 | |
|     if (lsize > MAXHBITS || (1u << lsize) > MAXHSIZE)
 | |
|       luaG_runerror(L, "table overflow");
 | |
|     size = twoto(lsize);
 | |
|     t->node = luaM_newvector(L, size, Node);
 | |
|     for (i = 0; i < cast_int(size); i++) {
 | |
|       Node *n = gnode(t, i);
 | |
|       gnext(n) = 0;
 | |
|       setnilkey(n);
 | |
|       setempty(gval(n));
 | |
|     }
 | |
|     t->lsizenode = cast_byte(lsize);
 | |
|     t->lastfree = gnode(t, size);  /* all positions are free */
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** (Re)insert all elements from the hash part of 'ot' into table 't'.
 | |
| */
 | |
| static void reinsert (lua_State *L, Table *ot, Table *t) {
 | |
|   int j;
 | |
|   int size = sizenode(ot);
 | |
|   for (j = 0; j < size; j++) {
 | |
|     Node *old = gnode(ot, j);
 | |
|     if (!isempty(gval(old))) {
 | |
|       /* doesn't need barrier/invalidate cache, as entry was
 | |
|          already present in the table */
 | |
|       TValue k;
 | |
|       getnodekey(L, &k, old);
 | |
|       luaH_set(L, t, &k, gval(old));
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Exchange the hash part of 't1' and 't2'.
 | |
| */
 | |
| static void exchangehashpart (Table *t1, Table *t2) {
 | |
|   lu_byte lsizenode = t1->lsizenode;
 | |
|   Node *node = t1->node;
 | |
|   Node *lastfree = t1->lastfree;
 | |
|   t1->lsizenode = t2->lsizenode;
 | |
|   t1->node = t2->node;
 | |
|   t1->lastfree = t2->lastfree;
 | |
|   t2->lsizenode = lsizenode;
 | |
|   t2->node = node;
 | |
|   t2->lastfree = lastfree;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Resize table 't' for the new given sizes. Both allocations (for
 | |
| ** the hash part and for the array part) can fail, which creates some
 | |
| ** subtleties. If the first allocation, for the hash part, fails, an
 | |
| ** error is raised and that is it. Otherwise, it copies the elements from
 | |
| ** the shrinking part of the array (if it is shrinking) into the new
 | |
| ** hash. Then it reallocates the array part.  If that fails, the table
 | |
| ** is in its original state; the function frees the new hash part and then
 | |
| ** raises the allocation error. Otherwise, it sets the new hash part
 | |
| ** into the table, initializes the new part of the array (if any) with
 | |
| ** nils and reinserts the elements of the old hash back into the new
 | |
| ** parts of the table.
 | |
| */
 | |
| void luaH_resize (lua_State *L, Table *t, unsigned int newasize,
 | |
|                                           unsigned int nhsize) {
 | |
|   unsigned int i;
 | |
|   Table newt;  /* to keep the new hash part */
 | |
|   unsigned int oldasize = setlimittosize(t);
 | |
|   TValue *newarray;
 | |
|   /* create new hash part with appropriate size into 'newt' */
 | |
|   setnodevector(L, &newt, nhsize);
 | |
|   if (newasize < oldasize) {  /* will array shrink? */
 | |
|     t->alimit = newasize;  /* pretend array has new size... */
 | |
|     exchangehashpart(t, &newt);  /* and new hash */
 | |
|     /* re-insert into the new hash the elements from vanishing slice */
 | |
|     for (i = newasize; i < oldasize; i++) {
 | |
|       if (!isempty(&t->array[i]))
 | |
|         luaH_setint(L, t, i + 1, &t->array[i]);
 | |
|     }
 | |
|     t->alimit = oldasize;  /* restore current size... */
 | |
|     exchangehashpart(t, &newt);  /* and hash (in case of errors) */
 | |
|   }
 | |
|   /* allocate new array */
 | |
|   newarray = luaM_reallocvector(L, t->array, oldasize, newasize, TValue);
 | |
|   if (l_unlikely(newarray == NULL && newasize > 0)) {  /* allocation failed? */
 | |
|     freehash(L, &newt);  /* release new hash part */
 | |
|     luaM_error(L);  /* raise error (with array unchanged) */
 | |
|   }
 | |
|   /* allocation ok; initialize new part of the array */
 | |
|   exchangehashpart(t, &newt);  /* 't' has the new hash ('newt' has the old) */
 | |
|   t->array = newarray;  /* set new array part */
 | |
|   t->alimit = newasize;
 | |
|   for (i = oldasize; i < newasize; i++)  /* clear new slice of the array */
 | |
|      setempty(&t->array[i]);
 | |
|   /* re-insert elements from old hash part into new parts */
 | |
|   reinsert(L, &newt, t);  /* 'newt' now has the old hash */
 | |
|   freehash(L, &newt);  /* free old hash part */
 | |
| }
 | |
| 
 | |
| 
 | |
| void luaH_resizearray (lua_State *L, Table *t, unsigned int nasize) {
 | |
|   int nsize = allocsizenode(t);
 | |
|   luaH_resize(L, t, nasize, nsize);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** nums[i] = number of keys 'k' where 2^(i - 1) < k <= 2^i
 | |
| */
 | |
| static void rehash (lua_State *L, Table *t, const TValue *ek) {
 | |
|   unsigned int asize;  /* optimal size for array part */
 | |
|   unsigned int na;  /* number of keys in the array part */
 | |
|   unsigned int nums[MAXABITS + 1];
 | |
|   int i;
 | |
|   int totaluse;
 | |
|   for (i = 0; i <= MAXABITS; i++) nums[i] = 0;  /* reset counts */
 | |
|   setlimittosize(t);
 | |
|   na = numusearray(t, nums);  /* count keys in array part */
 | |
|   totaluse = na;  /* all those keys are integer keys */
 | |
|   totaluse += numusehash(t, nums, &na);  /* count keys in hash part */
 | |
|   /* count extra key */
 | |
|   if (ttisinteger(ek))
 | |
|     na += countint(ivalue(ek), nums);
 | |
|   totaluse++;
 | |
|   /* compute new size for array part */
 | |
|   asize = computesizes(nums, &na);
 | |
|   /* resize the table to new computed sizes */
 | |
|   luaH_resize(L, t, asize, totaluse - na);
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** }=============================================================
 | |
| */
 | |
| 
 | |
| 
 | |
| Table *luaH_new (lua_State *L) {
 | |
|   GCObject *o = luaC_newobj(L, LUA_VTABLE, sizeof(Table));
 | |
|   Table *t = gco2t(o);
 | |
|   t->metatable = NULL;
 | |
|   t->flags = cast_byte(maskflags);  /* table has no metamethod fields */
 | |
|   t->array = NULL;
 | |
|   t->alimit = 0;
 | |
|   setnodevector(L, t, 0);
 | |
|   return t;
 | |
| }
 | |
| 
 | |
| 
 | |
| void luaH_free (lua_State *L, Table *t) {
 | |
|   freehash(L, t);
 | |
|   luaM_freearray(L, t->array, luaH_realasize(t));
 | |
|   luaM_free(L, t);
 | |
| }
 | |
| 
 | |
| 
 | |
| static Node *getfreepos (Table *t) {
 | |
|   if (!isdummy(t)) {
 | |
|     while (t->lastfree > t->node) {
 | |
|       t->lastfree--;
 | |
|       if (keyisnil(t->lastfree))
 | |
|         return t->lastfree;
 | |
|     }
 | |
|   }
 | |
|   return NULL;  /* could not find a free place */
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** inserts a new key into a hash table; first, check whether key's main
 | |
| ** position is free. If not, check whether colliding node is in its main
 | |
| ** position or not: if it is not, move colliding node to an empty place and
 | |
| ** put new key in its main position; otherwise (colliding node is in its main
 | |
| ** position), new key goes to an empty position.
 | |
| */
 | |
| void luaH_newkey (lua_State *L, Table *t, const TValue *key, TValue *value) {
 | |
|   Node *mp;
 | |
|   TValue aux;
 | |
|   if (l_unlikely(ttisnil(key)))
 | |
|     luaG_runerror(L, "table index is nil");
 | |
|   else if (ttisfloat(key)) {
 | |
|     lua_Number f = fltvalue(key);
 | |
|     lua_Integer k;
 | |
|     if (luaV_flttointeger(f, &k, F2Ieq)) {  /* does key fit in an integer? */
 | |
|       setivalue(&aux, k);
 | |
|       key = &aux;  /* insert it as an integer */
 | |
|     }
 | |
|     else if (l_unlikely(luai_numisnan(f)))
 | |
|       luaG_runerror(L, "table index is NaN");
 | |
|   }
 | |
|   if (ttisnil(value))
 | |
|     return;  /* do not insert nil values */
 | |
|   mp = mainpositionTV(t, key);
 | |
|   if (!isempty(gval(mp)) || isdummy(t)) {  /* main position is taken? */
 | |
|     Node *othern;
 | |
|     Node *f = getfreepos(t);  /* get a free place */
 | |
|     if (f == NULL) {  /* cannot find a free place? */
 | |
|       rehash(L, t, key);  /* grow table */
 | |
|       /* whatever called 'newkey' takes care of TM cache */
 | |
|       luaH_set(L, t, key, value);  /* insert key into grown table */
 | |
|       return;
 | |
|     }
 | |
|     lua_assert(!isdummy(t));
 | |
|     othern = mainpositionfromnode(t, mp);
 | |
|     if (othern != mp) {  /* is colliding node out of its main position? */
 | |
|       /* yes; move colliding node into free position */
 | |
|       while (othern + gnext(othern) != mp)  /* find previous */
 | |
|         othern += gnext(othern);
 | |
|       gnext(othern) = cast_int(f - othern);  /* rechain to point to 'f' */
 | |
|       *f = *mp;  /* copy colliding node into free pos. (mp->next also goes) */
 | |
|       if (gnext(mp) != 0) {
 | |
|         gnext(f) += cast_int(mp - f);  /* correct 'next' */
 | |
|         gnext(mp) = 0;  /* now 'mp' is free */
 | |
|       }
 | |
|       setempty(gval(mp));
 | |
|     }
 | |
|     else {  /* colliding node is in its own main position */
 | |
|       /* new node will go into free position */
 | |
|       if (gnext(mp) != 0)
 | |
|         gnext(f) = cast_int((mp + gnext(mp)) - f);  /* chain new position */
 | |
|       else lua_assert(gnext(f) == 0);
 | |
|       gnext(mp) = cast_int(f - mp);
 | |
|       mp = f;
 | |
|     }
 | |
|   }
 | |
|   setnodekey(L, mp, key);
 | |
|   luaC_barrierback(L, obj2gco(t), key);
 | |
|   lua_assert(isempty(gval(mp)));
 | |
|   setobj2t(L, gval(mp), value);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Search function for integers. If integer is inside 'alimit', get it
 | |
| ** directly from the array part. Otherwise, if 'alimit' is not equal to
 | |
| ** the real size of the array, key still can be in the array part. In
 | |
| ** this case, try to avoid a call to 'luaH_realasize' when key is just
 | |
| ** one more than the limit (so that it can be incremented without
 | |
| ** changing the real size of the array).
 | |
| */
 | |
| const TValue *luaH_getint (Table *t, lua_Integer key) {
 | |
|   if (l_castS2U(key) - 1u < t->alimit)  /* 'key' in [1, t->alimit]? */
 | |
|     return &t->array[key - 1];
 | |
|   else if (!limitequalsasize(t) &&  /* key still may be in the array part? */
 | |
|            (l_castS2U(key) == t->alimit + 1 ||
 | |
|             l_castS2U(key) - 1u < luaH_realasize(t))) {
 | |
|     t->alimit = cast_uint(key);  /* probably '#t' is here now */
 | |
|     return &t->array[key - 1];
 | |
|   }
 | |
|   else {
 | |
|     Node *n = hashint(t, key);
 | |
|     for (;;) {  /* check whether 'key' is somewhere in the chain */
 | |
|       if (keyisinteger(n) && keyival(n) == key)
 | |
|         return gval(n);  /* that's it */
 | |
|       else {
 | |
|         int nx = gnext(n);
 | |
|         if (nx == 0) break;
 | |
|         n += nx;
 | |
|       }
 | |
|     }
 | |
|     return &absentkey;
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** search function for short strings
 | |
| */
 | |
| const TValue *luaH_getshortstr (Table *t, TString *key) {
 | |
|   Node *n = hashstr(t, key);
 | |
|   lua_assert(key->tt == LUA_VSHRSTR);
 | |
|   for (;;) {  /* check whether 'key' is somewhere in the chain */
 | |
|     if (keyisshrstr(n) && eqshrstr(keystrval(n), key))
 | |
|       return gval(n);  /* that's it */
 | |
|     else {
 | |
|       int nx = gnext(n);
 | |
|       if (nx == 0)
 | |
|         return &absentkey;  /* not found */
 | |
|       n += nx;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| const TValue *luaH_getstr (Table *t, TString *key) {
 | |
|   if (key->tt == LUA_VSHRSTR)
 | |
|     return luaH_getshortstr(t, key);
 | |
|   else {  /* for long strings, use generic case */
 | |
|     TValue ko;
 | |
|     setsvalue(cast(lua_State *, NULL), &ko, key);
 | |
|     return getgeneric(t, &ko, 0);
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** main search function
 | |
| */
 | |
| const TValue *luaH_get (Table *t, const TValue *key) {
 | |
|   switch (ttypetag(key)) {
 | |
|     case LUA_VSHRSTR: return luaH_getshortstr(t, tsvalue(key));
 | |
|     case LUA_VNUMINT: return luaH_getint(t, ivalue(key));
 | |
|     case LUA_VNIL: return &absentkey;
 | |
|     case LUA_VNUMFLT: {
 | |
|       lua_Integer k;
 | |
|       if (luaV_flttointeger(fltvalue(key), &k, F2Ieq)) /* integral index? */
 | |
|         return luaH_getint(t, k);  /* use specialized version */
 | |
|       /* else... */
 | |
|     }  /* FALLTHROUGH */
 | |
|     default:
 | |
|       return getgeneric(t, key, 0);
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Finish a raw "set table" operation, where 'slot' is where the value
 | |
| ** should have been (the result of a previous "get table").
 | |
| ** Beware: when using this function you probably need to check a GC
 | |
| ** barrier and invalidate the TM cache.
 | |
| */
 | |
| void luaH_finishset (lua_State *L, Table *t, const TValue *key,
 | |
|                                    const TValue *slot, TValue *value) {
 | |
|   if (isabstkey(slot))
 | |
|     luaH_newkey(L, t, key, value);
 | |
|   else
 | |
|     setobj2t(L, cast(TValue *, slot), value);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** beware: when using this function you probably need to check a GC
 | |
| ** barrier and invalidate the TM cache.
 | |
| */
 | |
| void luaH_set (lua_State *L, Table *t, const TValue *key, TValue *value) {
 | |
|   const TValue *slot = luaH_get(t, key);
 | |
|   luaH_finishset(L, t, key, slot, value);
 | |
| }
 | |
| 
 | |
| 
 | |
| void luaH_setint (lua_State *L, Table *t, lua_Integer key, TValue *value) {
 | |
|   const TValue *p = luaH_getint(t, key);
 | |
|   if (isabstkey(p)) {
 | |
|     TValue k;
 | |
|     setivalue(&k, key);
 | |
|     luaH_newkey(L, t, &k, value);
 | |
|   }
 | |
|   else
 | |
|     setobj2t(L, cast(TValue *, p), value);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Try to find a boundary in the hash part of table 't'. From the
 | |
| ** caller, we know that 'j' is zero or present and that 'j + 1' is
 | |
| ** present. We want to find a larger key that is absent from the
 | |
| ** table, so that we can do a binary search between the two keys to
 | |
| ** find a boundary. We keep doubling 'j' until we get an absent index.
 | |
| ** If the doubling would overflow, we try LUA_MAXINTEGER. If it is
 | |
| ** absent, we are ready for the binary search. ('j', being max integer,
 | |
| ** is larger or equal to 'i', but it cannot be equal because it is
 | |
| ** absent while 'i' is present; so 'j > i'.) Otherwise, 'j' is a
 | |
| ** boundary. ('j + 1' cannot be a present integer key because it is
 | |
| ** not a valid integer in Lua.)
 | |
| */
 | |
| static lua_Unsigned hash_search (Table *t, lua_Unsigned j) {
 | |
|   lua_Unsigned i;
 | |
|   if (j == 0) j++;  /* the caller ensures 'j + 1' is present */
 | |
|   do {
 | |
|     i = j;  /* 'i' is a present index */
 | |
|     if (j <= l_castS2U(LUA_MAXINTEGER) / 2)
 | |
|       j *= 2;
 | |
|     else {
 | |
|       j = LUA_MAXINTEGER;
 | |
|       if (isempty(luaH_getint(t, j)))  /* t[j] not present? */
 | |
|         break;  /* 'j' now is an absent index */
 | |
|       else  /* weird case */
 | |
|         return j;  /* well, max integer is a boundary... */
 | |
|     }
 | |
|   } while (!isempty(luaH_getint(t, j)));  /* repeat until an absent t[j] */
 | |
|   /* i < j  &&  t[i] present  &&  t[j] absent */
 | |
|   while (j - i > 1u) {  /* do a binary search between them */
 | |
|     lua_Unsigned m = (i + j) / 2;
 | |
|     if (isempty(luaH_getint(t, m))) j = m;
 | |
|     else i = m;
 | |
|   }
 | |
|   return i;
 | |
| }
 | |
| 
 | |
| 
 | |
| static unsigned int binsearch (const TValue *array, unsigned int i,
 | |
|                                                     unsigned int j) {
 | |
|   while (j - i > 1u) {  /* binary search */
 | |
|     unsigned int m = (i + j) / 2;
 | |
|     if (isempty(&array[m - 1])) j = m;
 | |
|     else i = m;
 | |
|   }
 | |
|   return i;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Try to find a boundary in table 't'. (A 'boundary' is an integer index
 | |
| ** such that t[i] is present and t[i+1] is absent, or 0 if t[1] is absent
 | |
| ** and 'maxinteger' if t[maxinteger] is present.)
 | |
| ** (In the next explanation, we use Lua indices, that is, with base 1.
 | |
| ** The code itself uses base 0 when indexing the array part of the table.)
 | |
| ** The code starts with 'limit = t->alimit', a position in the array
 | |
| ** part that may be a boundary.
 | |
| **
 | |
| ** (1) If 't[limit]' is empty, there must be a boundary before it.
 | |
| ** As a common case (e.g., after 't[#t]=nil'), check whether 'limit-1'
 | |
| ** is present. If so, it is a boundary. Otherwise, do a binary search
 | |
| ** between 0 and limit to find a boundary. In both cases, try to
 | |
| ** use this boundary as the new 'alimit', as a hint for the next call.
 | |
| **
 | |
| ** (2) If 't[limit]' is not empty and the array has more elements
 | |
| ** after 'limit', try to find a boundary there. Again, try first
 | |
| ** the special case (which should be quite frequent) where 'limit+1'
 | |
| ** is empty, so that 'limit' is a boundary. Otherwise, check the
 | |
| ** last element of the array part. If it is empty, there must be a
 | |
| ** boundary between the old limit (present) and the last element
 | |
| ** (absent), which is found with a binary search. (This boundary always
 | |
| ** can be a new limit.)
 | |
| **
 | |
| ** (3) The last case is when there are no elements in the array part
 | |
| ** (limit == 0) or its last element (the new limit) is present.
 | |
| ** In this case, must check the hash part. If there is no hash part
 | |
| ** or 'limit+1' is absent, 'limit' is a boundary.  Otherwise, call
 | |
| ** 'hash_search' to find a boundary in the hash part of the table.
 | |
| ** (In those cases, the boundary is not inside the array part, and
 | |
| ** therefore cannot be used as a new limit.)
 | |
| */
 | |
| lua_Unsigned luaH_getn (Table *t) {
 | |
|   unsigned int limit = t->alimit;
 | |
|   if (limit > 0 && isempty(&t->array[limit - 1])) {  /* (1)? */
 | |
|     /* there must be a boundary before 'limit' */
 | |
|     if (limit >= 2 && !isempty(&t->array[limit - 2])) {
 | |
|       /* 'limit - 1' is a boundary; can it be a new limit? */
 | |
|       if (ispow2realasize(t) && !ispow2(limit - 1)) {
 | |
|         t->alimit = limit - 1;
 | |
|         setnorealasize(t);  /* now 'alimit' is not the real size */
 | |
|       }
 | |
|       return limit - 1;
 | |
|     }
 | |
|     else {  /* must search for a boundary in [0, limit] */
 | |
|       unsigned int boundary = binsearch(t->array, 0, limit);
 | |
|       /* can this boundary represent the real size of the array? */
 | |
|       if (ispow2realasize(t) && boundary > luaH_realasize(t) / 2) {
 | |
|         t->alimit = boundary;  /* use it as the new limit */
 | |
|         setnorealasize(t);
 | |
|       }
 | |
|       return boundary;
 | |
|     }
 | |
|   }
 | |
|   /* 'limit' is zero or present in table */
 | |
|   if (!limitequalsasize(t)) {  /* (2)? */
 | |
|     /* 'limit' > 0 and array has more elements after 'limit' */
 | |
|     if (isempty(&t->array[limit]))  /* 'limit + 1' is empty? */
 | |
|       return limit;  /* this is the boundary */
 | |
|     /* else, try last element in the array */
 | |
|     limit = luaH_realasize(t);
 | |
|     if (isempty(&t->array[limit - 1])) {  /* empty? */
 | |
|       /* there must be a boundary in the array after old limit,
 | |
|          and it must be a valid new limit */
 | |
|       unsigned int boundary = binsearch(t->array, t->alimit, limit);
 | |
|       t->alimit = boundary;
 | |
|       return boundary;
 | |
|     }
 | |
|     /* else, new limit is present in the table; check the hash part */
 | |
|   }
 | |
|   /* (3) 'limit' is the last element and either is zero or present in table */
 | |
|   lua_assert(limit == luaH_realasize(t) &&
 | |
|              (limit == 0 || !isempty(&t->array[limit - 1])));
 | |
|   if (isdummy(t) || isempty(luaH_getint(t, cast(lua_Integer, limit + 1))))
 | |
|     return limit;  /* 'limit + 1' is absent */
 | |
|   else  /* 'limit + 1' is also present */
 | |
|     return hash_search(t, limit);
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| #if defined(LUA_DEBUG)
 | |
| 
 | |
| /* export these functions for the test library */
 | |
| 
 | |
| Node *luaH_mainposition (const Table *t, const TValue *key) {
 | |
|   return mainpositionTV(t, key);
 | |
| }
 | |
| 
 | |
| #endif
 |