405 lines
		
	
	
	
		
			13 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			405 lines
		
	
	
	
		
			13 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
| ** $Id: lopcodes.h $
 | |
| ** Opcodes for Lua virtual machine
 | |
| ** See Copyright Notice in lua.h
 | |
| */
 | |
| 
 | |
| #ifndef lopcodes_h
 | |
| #define lopcodes_h
 | |
| 
 | |
| #include "llimits.h"
 | |
| 
 | |
| 
 | |
| /*===========================================================================
 | |
|   We assume that instructions are unsigned 32-bit integers.
 | |
|   All instructions have an opcode in the first 7 bits.
 | |
|   Instructions can have the following formats:
 | |
| 
 | |
|         3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
 | |
|         1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
 | |
| iABC          C(8)     |      B(8)     |k|     A(8)      |   Op(7)     |
 | |
| iABx                Bx(17)               |     A(8)      |   Op(7)     |
 | |
| iAsBx              sBx (signed)(17)      |     A(8)      |   Op(7)     |
 | |
| iAx                           Ax(25)                     |   Op(7)     |
 | |
| isJ                           sJ (signed)(25)            |   Op(7)     |
 | |
| 
 | |
|   A signed argument is represented in excess K: the represented value is
 | |
|   the written unsigned value minus K, where K is half the maximum for the
 | |
|   corresponding unsigned argument.
 | |
| ===========================================================================*/
 | |
| 
 | |
| 
 | |
| enum OpMode {iABC, iABx, iAsBx, iAx, isJ};  /* basic instruction formats */
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** size and position of opcode arguments.
 | |
| */
 | |
| #define SIZE_C		8
 | |
| #define SIZE_B		8
 | |
| #define SIZE_Bx		(SIZE_C + SIZE_B + 1)
 | |
| #define SIZE_A		8
 | |
| #define SIZE_Ax		(SIZE_Bx + SIZE_A)
 | |
| #define SIZE_sJ		(SIZE_Bx + SIZE_A)
 | |
| 
 | |
| #define SIZE_OP		7
 | |
| 
 | |
| #define POS_OP		0
 | |
| 
 | |
| #define POS_A		(POS_OP + SIZE_OP)
 | |
| #define POS_k		(POS_A + SIZE_A)
 | |
| #define POS_B		(POS_k + 1)
 | |
| #define POS_C		(POS_B + SIZE_B)
 | |
| 
 | |
| #define POS_Bx		POS_k
 | |
| 
 | |
| #define POS_Ax		POS_A
 | |
| 
 | |
| #define POS_sJ		POS_A
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** limits for opcode arguments.
 | |
| ** we use (signed) 'int' to manipulate most arguments,
 | |
| ** so they must fit in ints.
 | |
| */
 | |
| 
 | |
| /* Check whether type 'int' has at least 'b' bits ('b' < 32) */
 | |
| #define L_INTHASBITS(b)		((UINT_MAX >> ((b) - 1)) >= 1)
 | |
| 
 | |
| 
 | |
| #if L_INTHASBITS(SIZE_Bx)
 | |
| #define MAXARG_Bx	((1<<SIZE_Bx)-1)
 | |
| #else
 | |
| #define MAXARG_Bx	MAX_INT
 | |
| #endif
 | |
| 
 | |
| #define OFFSET_sBx	(MAXARG_Bx>>1)         /* 'sBx' is signed */
 | |
| 
 | |
| 
 | |
| #if L_INTHASBITS(SIZE_Ax)
 | |
| #define MAXARG_Ax	((1<<SIZE_Ax)-1)
 | |
| #else
 | |
| #define MAXARG_Ax	MAX_INT
 | |
| #endif
 | |
| 
 | |
| #if L_INTHASBITS(SIZE_sJ)
 | |
| #define MAXARG_sJ	((1 << SIZE_sJ) - 1)
 | |
| #else
 | |
| #define MAXARG_sJ	MAX_INT
 | |
| #endif
 | |
| 
 | |
| #define OFFSET_sJ	(MAXARG_sJ >> 1)
 | |
| 
 | |
| 
 | |
| #define MAXARG_A	((1<<SIZE_A)-1)
 | |
| #define MAXARG_B	((1<<SIZE_B)-1)
 | |
| #define MAXARG_C	((1<<SIZE_C)-1)
 | |
| #define OFFSET_sC	(MAXARG_C >> 1)
 | |
| 
 | |
| #define int2sC(i)	((i) + OFFSET_sC)
 | |
| #define sC2int(i)	((i) - OFFSET_sC)
 | |
| 
 | |
| 
 | |
| /* creates a mask with 'n' 1 bits at position 'p' */
 | |
| #define MASK1(n,p)	((~((~(Instruction)0)<<(n)))<<(p))
 | |
| 
 | |
| /* creates a mask with 'n' 0 bits at position 'p' */
 | |
| #define MASK0(n,p)	(~MASK1(n,p))
 | |
| 
 | |
| /*
 | |
| ** the following macros help to manipulate instructions
 | |
| */
 | |
| 
 | |
| #define GET_OPCODE(i)	(cast(OpCode, ((i)>>POS_OP) & MASK1(SIZE_OP,0)))
 | |
| #define SET_OPCODE(i,o)	((i) = (((i)&MASK0(SIZE_OP,POS_OP)) | \
 | |
| 		((cast(Instruction, o)<<POS_OP)&MASK1(SIZE_OP,POS_OP))))
 | |
| 
 | |
| #define checkopm(i,m)	(getOpMode(GET_OPCODE(i)) == m)
 | |
| 
 | |
| 
 | |
| #define getarg(i,pos,size)	(cast_int(((i)>>(pos)) & MASK1(size,0)))
 | |
| #define setarg(i,v,pos,size)	((i) = (((i)&MASK0(size,pos)) | \
 | |
|                 ((cast(Instruction, v)<<pos)&MASK1(size,pos))))
 | |
| 
 | |
| #define GETARG_A(i)	getarg(i, POS_A, SIZE_A)
 | |
| #define SETARG_A(i,v)	setarg(i, v, POS_A, SIZE_A)
 | |
| 
 | |
| #define GETARG_B(i)	check_exp(checkopm(i, iABC), getarg(i, POS_B, SIZE_B))
 | |
| #define GETARG_sB(i)	sC2int(GETARG_B(i))
 | |
| #define SETARG_B(i,v)	setarg(i, v, POS_B, SIZE_B)
 | |
| 
 | |
| #define GETARG_C(i)	check_exp(checkopm(i, iABC), getarg(i, POS_C, SIZE_C))
 | |
| #define GETARG_sC(i)	sC2int(GETARG_C(i))
 | |
| #define SETARG_C(i,v)	setarg(i, v, POS_C, SIZE_C)
 | |
| 
 | |
| #define TESTARG_k(i)	check_exp(checkopm(i, iABC), (cast_int(((i) & (1u << POS_k)))))
 | |
| #define GETARG_k(i)	check_exp(checkopm(i, iABC), getarg(i, POS_k, 1))
 | |
| #define SETARG_k(i,v)	setarg(i, v, POS_k, 1)
 | |
| 
 | |
| #define GETARG_Bx(i)	check_exp(checkopm(i, iABx), getarg(i, POS_Bx, SIZE_Bx))
 | |
| #define SETARG_Bx(i,v)	setarg(i, v, POS_Bx, SIZE_Bx)
 | |
| 
 | |
| #define GETARG_Ax(i)	check_exp(checkopm(i, iAx), getarg(i, POS_Ax, SIZE_Ax))
 | |
| #define SETARG_Ax(i,v)	setarg(i, v, POS_Ax, SIZE_Ax)
 | |
| 
 | |
| #define GETARG_sBx(i)  \
 | |
| 	check_exp(checkopm(i, iAsBx), getarg(i, POS_Bx, SIZE_Bx) - OFFSET_sBx)
 | |
| #define SETARG_sBx(i,b)	SETARG_Bx((i),cast_uint((b)+OFFSET_sBx))
 | |
| 
 | |
| #define GETARG_sJ(i)  \
 | |
| 	check_exp(checkopm(i, isJ), getarg(i, POS_sJ, SIZE_sJ) - OFFSET_sJ)
 | |
| #define SETARG_sJ(i,j) \
 | |
| 	setarg(i, cast_uint((j)+OFFSET_sJ), POS_sJ, SIZE_sJ)
 | |
| 
 | |
| 
 | |
| #define CREATE_ABCk(o,a,b,c,k)	((cast(Instruction, o)<<POS_OP) \
 | |
| 			| (cast(Instruction, a)<<POS_A) \
 | |
| 			| (cast(Instruction, b)<<POS_B) \
 | |
| 			| (cast(Instruction, c)<<POS_C) \
 | |
| 			| (cast(Instruction, k)<<POS_k))
 | |
| 
 | |
| #define CREATE_ABx(o,a,bc)	((cast(Instruction, o)<<POS_OP) \
 | |
| 			| (cast(Instruction, a)<<POS_A) \
 | |
| 			| (cast(Instruction, bc)<<POS_Bx))
 | |
| 
 | |
| #define CREATE_Ax(o,a)		((cast(Instruction, o)<<POS_OP) \
 | |
| 			| (cast(Instruction, a)<<POS_Ax))
 | |
| 
 | |
| #define CREATE_sJ(o,j,k)	((cast(Instruction, o) << POS_OP) \
 | |
| 			| (cast(Instruction, j) << POS_sJ) \
 | |
| 			| (cast(Instruction, k) << POS_k))
 | |
| 
 | |
| 
 | |
| #if !defined(MAXINDEXRK)  /* (for debugging only) */
 | |
| #define MAXINDEXRK	MAXARG_B
 | |
| #endif
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** invalid register that fits in 8 bits
 | |
| */
 | |
| #define NO_REG		MAXARG_A
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** R[x] - register
 | |
| ** K[x] - constant (in constant table)
 | |
| ** RK(x) == if k(i) then K[x] else R[x]
 | |
| */
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Grep "ORDER OP" if you change these enums. Opcodes marked with a (*)
 | |
| ** has extra descriptions in the notes after the enumeration.
 | |
| */
 | |
| 
 | |
| typedef enum {
 | |
| /*----------------------------------------------------------------------
 | |
|   name		args	description
 | |
| ------------------------------------------------------------------------*/
 | |
| OP_MOVE,/*	A B	R[A] := R[B]					*/
 | |
| OP_LOADI,/*	A sBx	R[A] := sBx					*/
 | |
| OP_LOADF,/*	A sBx	R[A] := (lua_Number)sBx				*/
 | |
| OP_LOADK,/*	A Bx	R[A] := K[Bx]					*/
 | |
| OP_LOADKX,/*	A	R[A] := K[extra arg]				*/
 | |
| OP_LOADFALSE,/*	A	R[A] := false					*/
 | |
| OP_LFALSESKIP,/*A	R[A] := false; pc++	(*)			*/
 | |
| OP_LOADTRUE,/*	A	R[A] := true					*/
 | |
| OP_LOADNIL,/*	A B	R[A], R[A+1], ..., R[A+B] := nil		*/
 | |
| OP_GETUPVAL,/*	A B	R[A] := UpValue[B]				*/
 | |
| OP_SETUPVAL,/*	A B	UpValue[B] := R[A]				*/
 | |
| 
 | |
| OP_GETTABUP,/*	A B C	R[A] := UpValue[B][K[C]:string]			*/
 | |
| OP_GETTABLE,/*	A B C	R[A] := R[B][R[C]]				*/
 | |
| OP_GETI,/*	A B C	R[A] := R[B][C]					*/
 | |
| OP_GETFIELD,/*	A B C	R[A] := R[B][K[C]:string]			*/
 | |
| 
 | |
| OP_SETTABUP,/*	A B C	UpValue[A][K[B]:string] := RK(C)		*/
 | |
| OP_SETTABLE,/*	A B C	R[A][R[B]] := RK(C)				*/
 | |
| OP_SETI,/*	A B C	R[A][B] := RK(C)				*/
 | |
| OP_SETFIELD,/*	A B C	R[A][K[B]:string] := RK(C)			*/
 | |
| 
 | |
| OP_NEWTABLE,/*	A B C k	R[A] := {}					*/
 | |
| 
 | |
| OP_SELF,/*	A B C	R[A+1] := R[B]; R[A] := R[B][RK(C):string]	*/
 | |
| 
 | |
| OP_ADDI,/*	A B sC	R[A] := R[B] + sC				*/
 | |
| 
 | |
| OP_ADDK,/*	A B C	R[A] := R[B] + K[C]:number			*/
 | |
| OP_SUBK,/*	A B C	R[A] := R[B] - K[C]:number			*/
 | |
| OP_MULK,/*	A B C	R[A] := R[B] * K[C]:number			*/
 | |
| OP_MODK,/*	A B C	R[A] := R[B] % K[C]:number			*/
 | |
| OP_POWK,/*	A B C	R[A] := R[B] ^ K[C]:number			*/
 | |
| OP_DIVK,/*	A B C	R[A] := R[B] / K[C]:number			*/
 | |
| OP_IDIVK,/*	A B C	R[A] := R[B] // K[C]:number			*/
 | |
| 
 | |
| OP_BANDK,/*	A B C	R[A] := R[B] & K[C]:integer			*/
 | |
| OP_BORK,/*	A B C	R[A] := R[B] | K[C]:integer			*/
 | |
| OP_BXORK,/*	A B C	R[A] := R[B] ~ K[C]:integer			*/
 | |
| 
 | |
| OP_SHRI,/*	A B sC	R[A] := R[B] >> sC				*/
 | |
| OP_SHLI,/*	A B sC	R[A] := sC << R[B]				*/
 | |
| 
 | |
| OP_ADD,/*	A B C	R[A] := R[B] + R[C]				*/
 | |
| OP_SUB,/*	A B C	R[A] := R[B] - R[C]				*/
 | |
| OP_MUL,/*	A B C	R[A] := R[B] * R[C]				*/
 | |
| OP_MOD,/*	A B C	R[A] := R[B] % R[C]				*/
 | |
| OP_POW,/*	A B C	R[A] := R[B] ^ R[C]				*/
 | |
| OP_DIV,/*	A B C	R[A] := R[B] / R[C]				*/
 | |
| OP_IDIV,/*	A B C	R[A] := R[B] // R[C]				*/
 | |
| 
 | |
| OP_BAND,/*	A B C	R[A] := R[B] & R[C]				*/
 | |
| OP_BOR,/*	A B C	R[A] := R[B] | R[C]				*/
 | |
| OP_BXOR,/*	A B C	R[A] := R[B] ~ R[C]				*/
 | |
| OP_SHL,/*	A B C	R[A] := R[B] << R[C]				*/
 | |
| OP_SHR,/*	A B C	R[A] := R[B] >> R[C]				*/
 | |
| 
 | |
| OP_MMBIN,/*	A B C	call C metamethod over R[A] and R[B]	(*)	*/
 | |
| OP_MMBINI,/*	A sB C k	call C metamethod over R[A] and sB	*/
 | |
| OP_MMBINK,/*	A B C k		call C metamethod over R[A] and K[B]	*/
 | |
| 
 | |
| OP_UNM,/*	A B	R[A] := -R[B]					*/
 | |
| OP_BNOT,/*	A B	R[A] := ~R[B]					*/
 | |
| OP_NOT,/*	A B	R[A] := not R[B]				*/
 | |
| OP_LEN,/*	A B	R[A] := #R[B] (length operator)			*/
 | |
| 
 | |
| OP_CONCAT,/*	A B	R[A] := R[A].. ... ..R[A + B - 1]		*/
 | |
| 
 | |
| OP_CLOSE,/*	A	close all upvalues >= R[A]			*/
 | |
| OP_TBC,/*	A	mark variable A "to be closed"			*/
 | |
| OP_JMP,/*	sJ	pc += sJ					*/
 | |
| OP_EQ,/*	A B k	if ((R[A] == R[B]) ~= k) then pc++		*/
 | |
| OP_LT,/*	A B k	if ((R[A] <  R[B]) ~= k) then pc++		*/
 | |
| OP_LE,/*	A B k	if ((R[A] <= R[B]) ~= k) then pc++		*/
 | |
| 
 | |
| OP_EQK,/*	A B k	if ((R[A] == K[B]) ~= k) then pc++		*/
 | |
| OP_EQI,/*	A sB k	if ((R[A] == sB) ~= k) then pc++		*/
 | |
| OP_LTI,/*	A sB k	if ((R[A] < sB) ~= k) then pc++			*/
 | |
| OP_LEI,/*	A sB k	if ((R[A] <= sB) ~= k) then pc++		*/
 | |
| OP_GTI,/*	A sB k	if ((R[A] > sB) ~= k) then pc++			*/
 | |
| OP_GEI,/*	A sB k	if ((R[A] >= sB) ~= k) then pc++		*/
 | |
| 
 | |
| OP_TEST,/*	A k	if (not R[A] == k) then pc++			*/
 | |
| OP_TESTSET,/*	A B k	if (not R[B] == k) then pc++ else R[A] := R[B] (*) */
 | |
| 
 | |
| OP_CALL,/*	A B C	R[A], ... ,R[A+C-2] := R[A](R[A+1], ... ,R[A+B-1]) */
 | |
| OP_TAILCALL,/*	A B C k	return R[A](R[A+1], ... ,R[A+B-1])		*/
 | |
| 
 | |
| OP_RETURN,/*	A B C k	return R[A], ... ,R[A+B-2]	(see note)	*/
 | |
| OP_RETURN0,/*		return						*/
 | |
| OP_RETURN1,/*	A	return R[A]					*/
 | |
| 
 | |
| OP_FORLOOP,/*	A Bx	update counters; if loop continues then pc-=Bx; */
 | |
| OP_FORPREP,/*	A Bx	<check values and prepare counters>;
 | |
|                         if not to run then pc+=Bx+1;			*/
 | |
| 
 | |
| OP_TFORPREP,/*	A Bx	create upvalue for R[A + 3]; pc+=Bx		*/
 | |
| OP_TFORCALL,/*	A C	R[A+4], ... ,R[A+3+C] := R[A](R[A+1], R[A+2]);	*/
 | |
| OP_TFORLOOP,/*	A Bx	if R[A+2] ~= nil then { R[A]=R[A+2]; pc -= Bx }	*/
 | |
| 
 | |
| OP_SETLIST,/*	A B C k	R[A][C+i] := R[A+i], 1 <= i <= B		*/
 | |
| 
 | |
| OP_CLOSURE,/*	A Bx	R[A] := closure(KPROTO[Bx])			*/
 | |
| 
 | |
| OP_VARARG,/*	A C	R[A], R[A+1], ..., R[A+C-2] = vararg		*/
 | |
| 
 | |
| OP_VARARGPREP,/*A	(adjust vararg parameters)			*/
 | |
| 
 | |
| OP_EXTRAARG/*	Ax	extra (larger) argument for previous opcode	*/
 | |
| } OpCode;
 | |
| 
 | |
| 
 | |
| #define NUM_OPCODES	((int)(OP_EXTRAARG) + 1)
 | |
| 
 | |
| 
 | |
| 
 | |
| /*===========================================================================
 | |
|   Notes:
 | |
| 
 | |
|   (*) Opcode OP_LFALSESKIP is used to convert a condition to a boolean
 | |
|   value, in a code equivalent to (not cond ? false : true).  (It
 | |
|   produces false and skips the next instruction producing true.)
 | |
| 
 | |
|   (*) Opcodes OP_MMBIN and variants follow each arithmetic and
 | |
|   bitwise opcode. If the operation succeeds, it skips this next
 | |
|   opcode. Otherwise, this opcode calls the corresponding metamethod.
 | |
| 
 | |
|   (*) Opcode OP_TESTSET is used in short-circuit expressions that need
 | |
|   both to jump and to produce a value, such as (a = b or c).
 | |
| 
 | |
|   (*) In OP_CALL, if (B == 0) then B = top - A. If (C == 0), then
 | |
|   'top' is set to last_result+1, so next open instruction (OP_CALL,
 | |
|   OP_RETURN*, OP_SETLIST) may use 'top'.
 | |
| 
 | |
|   (*) In OP_VARARG, if (C == 0) then use actual number of varargs and
 | |
|   set top (like in OP_CALL with C == 0).
 | |
| 
 | |
|   (*) In OP_RETURN, if (B == 0) then return up to 'top'.
 | |
| 
 | |
|   (*) In OP_LOADKX and OP_NEWTABLE, the next instruction is always
 | |
|   OP_EXTRAARG.
 | |
| 
 | |
|   (*) In OP_SETLIST, if (B == 0) then real B = 'top'; if k, then
 | |
|   real C = EXTRAARG _ C (the bits of EXTRAARG concatenated with the
 | |
|   bits of C).
 | |
| 
 | |
|   (*) In OP_NEWTABLE, B is log2 of the hash size (which is always a
 | |
|   power of 2) plus 1, or zero for size zero. If not k, the array size
 | |
|   is C. Otherwise, the array size is EXTRAARG _ C.
 | |
| 
 | |
|   (*) For comparisons, k specifies what condition the test should accept
 | |
|   (true or false).
 | |
| 
 | |
|   (*) In OP_MMBINI/OP_MMBINK, k means the arguments were flipped
 | |
|    (the constant is the first operand).
 | |
| 
 | |
|   (*) All 'skips' (pc++) assume that next instruction is a jump.
 | |
| 
 | |
|   (*) In instructions OP_RETURN/OP_TAILCALL, 'k' specifies that the
 | |
|   function builds upvalues, which may need to be closed. C > 0 means
 | |
|   the function is vararg, so that its 'func' must be corrected before
 | |
|   returning; in this case, (C - 1) is its number of fixed parameters.
 | |
| 
 | |
|   (*) In comparisons with an immediate operand, C signals whether the
 | |
|   original operand was a float. (It must be corrected in case of
 | |
|   metamethods.)
 | |
| 
 | |
| ===========================================================================*/
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** masks for instruction properties. The format is:
 | |
| ** bits 0-2: op mode
 | |
| ** bit 3: instruction set register A
 | |
| ** bit 4: operator is a test (next instruction must be a jump)
 | |
| ** bit 5: instruction uses 'L->top' set by previous instruction (when B == 0)
 | |
| ** bit 6: instruction sets 'L->top' for next instruction (when C == 0)
 | |
| ** bit 7: instruction is an MM instruction (call a metamethod)
 | |
| */
 | |
| 
 | |
| LUAI_DDEC(const lu_byte luaP_opmodes[NUM_OPCODES];)
 | |
| 
 | |
| #define getOpMode(m)	(cast(enum OpMode, luaP_opmodes[m] & 7))
 | |
| #define testAMode(m)	(luaP_opmodes[m] & (1 << 3))
 | |
| #define testTMode(m)	(luaP_opmodes[m] & (1 << 4))
 | |
| #define testITMode(m)	(luaP_opmodes[m] & (1 << 5))
 | |
| #define testOTMode(m)	(luaP_opmodes[m] & (1 << 6))
 | |
| #define testMMMode(m)	(luaP_opmodes[m] & (1 << 7))
 | |
| 
 | |
| /* "out top" (set top for next instruction) */
 | |
| #define isOT(i)  \
 | |
| 	((testOTMode(GET_OPCODE(i)) && GETARG_C(i) == 0) || \
 | |
|           GET_OPCODE(i) == OP_TAILCALL)
 | |
| 
 | |
| /* "in top" (uses top from previous instruction) */
 | |
| #define isIT(i)		(testITMode(GET_OPCODE(i)) && GETARG_B(i) == 0)
 | |
| 
 | |
| #define opmode(mm,ot,it,t,a,m)  \
 | |
|     (((mm) << 7) | ((ot) << 6) | ((it) << 5) | ((t) << 4) | ((a) << 3) | (m))
 | |
| 
 | |
| 
 | |
| /* number of list items to accumulate before a SETLIST instruction */
 | |
| #define LFIELDS_PER_FLUSH	50
 | |
| 
 | |
| #endif
 |